more maths grads
multiplying opportunities

Starter worksheet

Meteorologists use many different techniques and formulae to calculate and predict the weather. But one part of maths that they have to use a great deal is percentages.

When water evaporates it turns into vapour in the air. The amount of water vapour in the air is changes at different temperatures and in different places.

Can you think of somewhere that might have a tiny amount of water in the air? What about a place with lots of water in the air?

Meteorologists measure the amount of water vapour in the air to find the relative humidity.


The relative humidity is the percentage of the maximum water the air could hold (at a specific temperature) that is actually in the air. So, a relative humidity of $51 \%$ would mean that the air contained $51 \%$ of the water it could hold at that temperature. This how to calculate relative humidity:

$$
\text { Relative humidity }=\frac{\text { Grams of water per cubic metre of air }}{\text { Most grams of water per cubic metre the air can hold }} \times 100
$$

Here are some relative humidity data for different world cities, recorded on a day in October.
Use the formula to fill in the gaps in the table.

| City | Temperature <br> $\left({ }^{\circ} \mathbf{c}\right)$ | Relative <br> humidity <br> $(\%)$ | Water <br> Vapour <br> $\left(\mathbf{g} / \mathbf{m}^{\mathbf{3}}\right)$ | Maximum <br> Vapour <br> $\left(\mathbf{g} / \mathbf{m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| Cape Town | 21 |  | 9.18 | 18 |
| Dubai | 28 |  | 2.75 | 25 |
| London | 7 |  | 4.06 | 7.8 |
| Moscow | 7 | 90 |  | 7.8 |
| Mumbai | 36 | 72 |  | 42 |
| New Orleans | 17 | 35 | 5.08 |  |
| Rio de Janeiro | 23 | 92 | 18.86 |  |
| Rome | 21 | 86 |  | 18 |
| Timbuktu | 38 | 23 | 11.04 |  |

Core worksheet

When investigating the weather, it is often useful to compare data to long term averages. This gives meteorologists a sense of how weather conditions over a small period, often a month, relate to larger climate and weather patterns. Percentages are particularly helpful for making such comparisons, especially when investigating rainfall and hours of sunshine. There are two different ways to do this: calculate the percentage anomaly or calculate the percentage difference.

## 1. Calculate the percentage anomaly

This means that you turn your information into a percentage of the average.
So, if 79.8 mm of rainfall fell one January and the average January rainfall was 95 mm the anomaly would be $79.8 \div 95$ which is $84 \%$ as a percentage.

The table below contains information from the Met Office about hours of sunshine each month in the UK in 2006. Calculate the sunshine percentage anomaly for each month.

## 2. Calculate the percentage difference

This means that you turn the difference between your information and the average into a percentage of the average. The method is:

$$
\text { Percentage difference }=\frac{\text { New value }- \text { average }}{\text { Average }} \times 100
$$

A negative answer shows there has been a percentage decrease and a positive answer shows there has been a percentage increase. Using the table, find the percentage difference of sunshine for each month.

Compare your percentage anomalies and percentage differences. What do you notice?

|  | Sunshine [hours] |  |
| :--- | :---: | :---: |
| Month | 2006 | $1961-90$ <br> average |
| January | 45 | 43.9 |
| February | 67.9 | 63.1 |
| March | 89 | 100.6 |
| April | 164.2 | 141.9 |
| May | 179.6 | 179 |
| June | 210.3 | 175.9 |
| July | 253.3 | 167.1 |
| August | 137.9 | 158.1 |
| September | 140.1 | 120.2 |
| October | 86.6 | 88.5 |
| November | 78.6 | 58.3 |
| December | 43.3 | 39.3 |



